Manakahdi bawah ini yang bukan merupakan solusi dari 2 sin kuadrat x min 1 sama dengan nol Manakah di bawah ini yang bukan merupakan solusi dari 2 sin kuadrat x min 1 sama dengan nol Belajar. Primagama. ZeniusLand. Profesional. Fitur. Paket Belajar. Promo. Testimonial. Blog. Panduan. Paket Belajar. Masuk/Daftar. Home.
Persamaankuadrat adalah persamaan yang pangkat tertinggi peubahnya sama dengan dua Contoh: Y 2 + 4y +1 = 0. x 2 + 2 ( x + 1) +4 = 0. m p 2 + (m+1) p + 3p+1 = 0. Peubah atau variabel persamaan kuadrat umumnya adalah x, tetapi variabel tersebut dapat huruf apa saja seperti pada contoh. Bentuk umum persamaan kuadrat ax 2 + bx + c =0 , a ‡0.
zQXPH. Trigonometri Contoh Soal-soal Populer Trigonometri Sederhanakan akar kuadrat dari 1-sinx^2 Step 1Terapkan identitas 2Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Kelas 10 SMATrigonometriIdentitas TrigonometriIdentitas TrigonometriTrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0231Bentuk sederhana dari 1+tan^2 x1-cos^2 x adalah ...0254Nilai dari sin 45 cos 135 tan 60/sin 225 cos 150 cot 12...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0221Bentuk cot x/cot x+tan x ekuivalen denganTeks videoJika kita menemukan soal seperti ini terlebih dahulu setelah memahami yaitu konsep trigonometri Di sini ternyata untuk mencari bentuk lain dari sin X per 1 dikurang cos X dan di sini saya paparkan yaitu rumus identitas trigonometri yang kita pakai di mana itu Sin kuadrat x ditambah cos kuadrat x = 1 dimana untuk rumus ini kita ubah juga menjadi Sin kuadrat x = 1 dikurang cos kuadrat X dan cos kuadrat x = 1 dikurang Sin kuadrat X kemudian di sini kita Tuliskan kembali ya itu soalnya di sini Sin X per yaitu 1 dikurang cos X kemudian di sini langkah selanjutnya ialah kita akan melakukan itu perkalian Sekawan di mana untuk melawan perkalian Sekawan ialah pembilang dan penyebut sama sama jika itu penyebutnya namun disini tandanya positif. Oleh karena itu di sini tertulis yaitu 1 ditambah cos X dan 3 sama 1 + cos X kemudian = dimana disini Sin Xdalam kurung 1 + cos X kemudian per dalam kurung 1 dikurang cos X dikali dalam kurung 1 + cos X = disini yaitu Sin X dikali dalam kurung 1 ditambah cos X kemudian per di mana ini kita kalikan yaitu 1 dikali 11 kemudian 1 dikali positif cos x 1 cos x + cos X dan Min cos X dikali 1 ialah Min cos X * Sin a dikurang cos X kemudian di sini Min cos x * cos X min cos kuadrat X dikurang yaitu cos kuadrat X kemudian di sini sama dengan yaitu Sin X dikali dalam kurung 1 + cos kemudian pergi sini satu di mana cos X dikurang cos X itu abis makanya tertulis 1 dikurang cos kuadrat X kemudian = disini Sin XX dalam kurung 1 + cos X kemudian per disini untuk penyebutnya 1 dikurang cos kuadrat X kita Ubah menjadi Sin kuadrat X seperti yang telah saya dapatkan disini untuk rumus identitas trigonometri. Oleh karena itu di sini Sin kuadrat X dan dari sini kita bagi di mana Ini sisa 1 dan ini masih ada sisanya Sin X dan b kita ketahui hasilnya sama dengan di sini 1 ditambah cos X kemudian per Sin X dan dari sini kita ketahui jawabannya ialah yang a sehingga terasa selesaikan persoalan ini sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriBerikut adalah himpunan penyelesaian persamaan kuadrat trigonometri 2 sin^2 2x-7 sin 2x+3=0,0 <= x <= 2 pi, kecuali ... A. pi/12 B. 5 pi/12 C. 8 pi/12 D. 13 pi/12 E. 17 pi/12 Persamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videohalo friend pada video kali ini kita akan membahas soal berikut kita akan menentukan himpunan penyelesaian persamaan kuadrat trigonometri dari 2 Sin kuadrat 2x dikurang 7 Sin 2 x + 3 lebih dari sama dengan x kurang dari sama dengan 2 phi penyelesaiannya adalah sebagai berikut ingat kembali persamaan trigonometri Sin X = Sin a derajat himpunan penyelesaian dari persamaan trigonometri tersebut adalah x = a derajat ditambah x x 2 phi atau X = buka kurung P kurang 2 derajat tutup kurung ditambah k dikali dua cara yaitu D lebih dari sama dengan nol dan Cara cukupnya Sin X lebih dari sama dengan negatif 1 kurang dari sama dengan 1 bentuk 2 Sin kuadrat 2x dikurang 7 sin 2x + 3 = 0 misalkan sin 2x = a maka didapatkan 2 a kuadrat dikurang 7 ditambah 3 sama dengan kemudian difaktorkan sehingga diperoleh dalam kurung 2 a dikurang 1 dikali dalam kurung a dikurang 3 sama dengan nol maka diperoleh 2 a dikurang 1 sama dengan nol A = 1 per 2 dan a dikurang 3 sama dengan nol maka didapatkan a = 3 di sini yang digunakan a = setengah karena cara perlunya itu Sin X lebih dari sama dengan negatif 1 kurang dari sama dengan 1 kemudian kembalikan a menjadi sin 2x sehingga untuk a = setengah diperoleh sin 2x = setengah maka sin 2x = Sin phi per 6 karena = Sin phi per 63 dengan menggunakan f = a derajat ditambah x * 2 phi maka didapatkan 2 x = phi per 6 + k dikali 2 kemudian kedua ruas dibagi dengan setengah sehingga diperoleh X = phi per 12 + x x 3 untuk x = 0 maka didapatkan Esa per 12 dan untuk x = 1 maka didapatkan x = 13 phi per 12 dan untuk X = 24 kan 25 phi per 12 ini tidak memenuhi karena X lebih dari sama dengan x kurang dari sama dengan 2 phi kemudian X = dalam kurung phi dikurang a derajat + x x 2 diperoleh 2 x = buka kurung phi dikurang phi per 6 tutup kurung ditambah k dikali 2 kemudian didapatkan 2 x = 5 phi per 6 + k dikali 2 kemudian kedua ruas dibagi dengan setengah sehingga didapatkan x = 5 phi per 12 + x x 3 untuk x = 0 didapatkan dengan 5 phi per 12 dan untuk x = 1 didapatkan x = 17 phi per 12 untuk a = 2 didapatkan 29 phi per 12 tidak memenuhi dari sama dengan 0 kurang dari sama dengan 2 phi sehingga diperoleh himpunan penyelesaiannya adalah tipe 12 13 12 5 phi per 1217 phi per 12 Jika diperhatikan pada pilihan ganda yang bukan merupakan himpunan penyelesaiannya adalah C yaitu 8 phi per 12 sampai jumpa di soal Selanjutnya yaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
You are here Home / rumus matematika / Rumus Persamaan Kuadrat, Pengertian, Sifat, dan Metode – Hai sobat hitung, rumushitung ada update artikel nih. Isinya membahas tentang Rumus Persamaan Kuadrat, Pengertian, Sifat, dan Metode Penyelesaian. Disini rumushitung akan menjelaskan apa itu persamaan kuadrat, apa saja jenis persamaan kuadrat, bagaimana rumus persamaan kuadrat, dan beberapa contoh soal persamaan kuadrat. Simak penjelasannya dengan seksama. Contents1 Persamaan Kuadrat2 Apa itu Persamaan Kuadrat?3 Apa itu Rumus Kuadrat?4 Rumus Persamaan Kuadrat Penting5 Bukti Rumus Kuadrat6 Akar Persamaan Kuadrat7 Sifat Akar Persamaan Kuadrat8 Diskriminan D = b² – 4ac9 Hubungan Antara Koefisien dan Akar Persamaan Kuadrat10 Metode Penyelesaian Persamaan Kuadrat11 Faktorisasi Persamaan Kuadrat12 Rumus Kuadrat Untuk Menentukan Akar13 Metode Menyelesaikan Kuadrat14 Metode Grafik untuk Menentukan Akar15 Tips dan Trik Memecahkan Persamaan Kuadrat Persamaan kuadrat adalah persamaan yang memiliki variabel berpangkat dua atau aljabar derajat dua dan berbentuk ax² + bx + c = 0. Kata “Kuadrat” berasal dari kata “Quad” yang berarti persegi. Dengan kata lain, persamaan kuadrat adalah “persamaan derajat 2”. Ada banyak skenario di mana persamaan kuadrat digunakan. Tahukah kalian bahwa ketika sebuah roket diluncurkan, lintasannya digambarkan oleh persamaan kuadrat? Selanjutnya, persamaan kuadrat memiliki banyak aplikasi dalam fisika, teknik, astronomi. Persamaan kuadrat adalah persamaan derajat dua di x variabel yang memiliki dua jawaban untuk x. Kedua jawaban untuk x ini juga disebut akar persamaan kuadrat dan diberi tanda α, β. Kita akan belajar lebih banyak tentang akar persamaan kuadrat di bawah ini. Apa itu Persamaan Kuadrat? Seperti yang sudah dijelaskan sebelumnya, persamaan kuadrat adalah persamaan berpangkat dua / aljabar derajat dua dalam variabel. Bentuk umum persamaan kuadrat adalah ax² + bx + c = 0, di mana a dan b adalah koefisien, x adalah variabel, dan c adalah konstanta. Syarat pertama agar suatu persamaan menjadi persamaan kuadrat adalah koefisien x² adalah suku bukan nol a ≠ 0. Untuk menulis persamaan kuadrat dalam bentuk umum, suku x² ditulis terlebih dahulu, diikuti suku x, dan terakhir konstanta. Nilai numerik dari a, b dan c umumnya tidak ditulis sebagai pecahan atau desimal, tetapi ditulis sebagai nilai integral. Bentuk umum persamaan kuadrat Selanjutnya dalam masalah matematika nyata persamaan kuadrat disajikan dalam bentuk yang berbeda x – 1x + 2 = 0, -x² = -3x + 1, 5xx + 3 = 12x, x³ = xx² + x – 3. Semua persamaan ini perlu diubah ke dalam bentuk umum persamaan kuadrat sebelum melakukan operasi lebih lanjut. Apa itu Rumus Kuadrat? Rumus kuadrat adalah cara paling sederhana untuk menemukan akar persamaan kuadrat. Ada persamaan kuadrat tertentu yang tidak dapat difaktorkan dengan mudah, dan di sini kita dapat dengan mudah menggunakan rumus kuadrat ini untuk menemukan akar-akarnya secepat mungkin. Akar persamaan kuadrat selanjutnya membantu menemukan jumlah akar dan hasil kali akar persamaan kuadrat. Dua akar dalam rumus kuadrat disajikan sebagai persamaan tunggal. Tanda positif dan tanda negatif dapat digunakan secara alternatif untuk mendapatkan dua akar persamaan yang berbeda. Rumus Kuadrat Rumus Persamaan Kuadrat Penting Daftar rumus penting berikut ini berguna untuk menyelesaikan persamaan kuadrat. Bukti Rumus Kuadrat Terdapat persamaan kuadrat arbitrer ax² + bx + c = 0, a ≠ 0 Untuk menentukan akar persamaan ini, kita akan melanjutkan perumusannya sebagai berikut ax² + bx = -c ⇒ x² + bx/a = -c/a Sekarang, kita nyatakan ruas kiri sebagai kuadrat sempurna, dengan memperkenalkan suku baru b/2a² pada kedua ruas x²+ bx/a + b/2a² = -c/a + b/2a² Sisi kiri sekarang menjadi persegi sempurna x + b/2a² = -c/a + b²/4a² x + b/2a² = b² – 4ac/4a² Sekarang kita dapat mengambil akar kuadrat untuk mendapatkan hasilnya x + b/2a = +√b² – 4ac/2a x = -b + √b² – 4ac/2a Jadi, dengan melengkapi kuadrat, kita dapat memisahkan x dan memperoleh dua akar persamaan. Akar Persamaan Kuadrat Akar persamaan kuadrat adalah dua nilai x variabel, yang diperoleh dengan menyelesaikan persamaan kuadrat. Akar persamaan kuadrat disebut dengan simbol umum, yaitu alfa α, dan beta β. Namun, biasanya akar persamaan kuadrat bisa menggunakan simbol lain. Akar persamaan kuadrat ini juga disebut nol persamaan. Di sini kita akan belajar lebih banyak tentang cara menemukan sifat akar persamaan kuadrat tanpa benar-benar menemukan akar persamaan. Dan juga periksa rumus untuk menentukan jumlah dan hasil kali dari akar persamaan. Sifat Akar Persamaan Kuadrat Sifat akar persamaan kuadrat dapat ditemukan tanpa benar-benar menemukan akar α, β dari persamaan tersebut. Ini dimungkinkan dengan mengambil nilai diskriminan, yang merupakan bagian dari rumus untuk menyelesaikan persamaan kuadrat. Nilai b² – 4ac disebut diskriminan persamaan kuadrat, dan dinyatakan sebagai “D”. Berdasarkan nilai diskriminan sifat akar persamaan kuadrat dapat diprediksi. Diskriminan D = b² – 4ac D > 0, akar-akarnya nyata dan berbeda D = 0, akar-akarnya nyata dan sama. D < 0, akarnya tidak ada atau akarnya imajiner. Diskriminan persamaan kuadrat Hubungan Antara Koefisien dan Akar Persamaan Kuadrat Koefisien x², x, dan konstanta pada persamaan kuadrat ax² + bx + c = 0 berguna untuk mempelajari lebih lanjut tentang sifat-sifat akar persamaan kuadrat. Jumlah dan hasil kali akar persamaan kuadrat dapat langsung dihitung dari persamaan, tanpa benar-benar menemukan akar persamaan kuadrat. Jumlah akar persamaan kuadrat sama dengan negatif dari koefisien x dibagi dengan koefisien x² -b/a. Hasil kali akar persamaan kuadrat sama dengan konstanta dibagi dengan koefisien x² c/a. Untuk persamaan kuadrat ax² + bx + c = 0, jumlah dan hasil kali akar-akarnya adalah sebagai berikut. Jumlah akar α + β = -b/a Hasil kali akar αβ = c/a Persamaan kuadrat juga dapat dibentuk untuk akar-akar persamaan yang diberikan. Jika α, β adalah akar-akar persamaan kuadrat, maka persamaan kuadratnya adalah sebagai berikut. x² – α + βx + αβ = 0 Metode Penyelesaian Persamaan Kuadrat Persamaan kuadrat dapat diselesaikan untuk mendapatkan dua nilai x atau dua akar persamaan. Ada 4 metode berbeda untuk menentukan akar persamaan kuadrat. Empat metode penyelesaian persamaan kuadrat adalah sebagai berikut. Memfaktorkan Persamaan Kuadrat Metode Rumus Kuadrat Untuk Menentukan Akar Metode Menyelesaikan Kuadrat Metode Grafik Untuk Menentukan Akar Mari kita lihat secara rinci masing-masing metode di atas untuk memahami cara penggunaannya. Faktorisasi Persamaan Kuadrat Faktorisasi persamaan kuadrat mengikuti urutan langkah-langkah. Untuk bentuk umum persamaan kuadrat ax² + bx + c = 0, kita harus terlebih dahulu membagi suku tengah menjadi dua suku, sehingga hasil kali suku sama dengan konstanta. Selanjutnya, kita dapat mengambil istilah umum dari istilah yang tersedia, untuk akhirnya mendapatkan faktor yang diperlukan. Untuk memahami faktorisasi, bentuk umum persamaan kuadrat dapat disajikan sebagai berikut. x² + a + bx + ab = 0 x² + ax + bx + ab = 0 xx + a + bx + a = 0 x + ax + b = 0 Mari kita memahami faktorisasi melalui contoh di bawah ini. x² + 5x + 6 = 0 x² + 2 + 3x + 23 = 0 x² + 2x + 3x + 6 = 0 xx + 2 + 3x + 2 = 0 x + 2x + 3 = 0 Dengan demikian diperoleh dua faktor persamaan kuadrat x + 2 dan x + 3. Rumus Kuadrat Untuk Menentukan Akar Persamaan kuadrat yang tidak dapat diselesaikan melalui metode faktorisasi, dapat diselesaikan dengan bantuan rumus kuadrat. Rumus untuk menyelesaikan persamaan kuadrat menggunakan istilah dari bentuk umum persamaan kuadrat. Melalui rumus di bawah ini kita dapat memperoleh dua akar x dengan terlebih dahulu menggunakan tanda positif dalam rumus dan kemudian menggunakan tanda negatif. Persamaan kuadrat apa pun dapat diselesaikan menggunakan rumus ini. Rumus Kuadrat Lebih jauh dari dua metode penyelesaian persamaan kuadrat yang disebutkan di atas, ada metode penting lain untuk menyelesaikan persamaan kuadrat. Metode melengkapi kuadrat untuk persamaan kuadrat juga berguna untuk menemukan akar persamaan. Metode ini mencakup banyak perhitungan aljabar dan karenanya telah dijelaskan sebagai topik terpisah. Metode Menyelesaikan Kuadrat Metode menyelesaikan kuadrat untuk persamaan kuadrat, adalah dengan kuadratkan dan sederhanakan secara aljabar, untuk mendapatkan akar persamaan yang diperlukan. Perhatikan persamaan kuadrat ax² + bx + c = 0, a ≠ 0. Untuk menentukan akar-akar persamaan ini, kita sederhanakan sebagai berikut ax² + bx + c = 0 ax² + bx = -c x² + bx/a = -c/a Sekarang, kita nyatakan ruas kiri sebagai kuadrat sempurna, kemudian tambahkan suku baru b/2a² pada kedua ruas x² + bx/a + b/2a² = -c/a + b/2a² x + b/2a² = -c/a + b² / 4a² x + b/2a² = b² – 4ac / 4a² x + b/2a = ±√b²- 4ac / 2a Sekarang dengan metode melengkapi kuadrat ini, kita dapat dengan tepat menghasilkan nilai akar persamaan. Selanjutnya pada penyederhanaan dan pengambilan akar kuadrat, dua kemungkinan akar persamaan kuadrat adalah, x = -b + b² – 4ac/2a. Di sini tanda positif + memberikan satu akar dan tanda negatif - memberikan akar lain dari persamaan kuadrat. Umumnya, metode terperinci ini dihindari, dan hanya rumus yang digunakan untuk mendapatkan akar yang diperlukan. Metode Grafik untuk Menentukan Akar Grafik persamaan kuadrat ax² + bx + c = 0 dapat diperoleh dengan menyatakan persamaan kuadrat sebagai fungsi y = ax² + bx + c. Selanjutnya dalam memecahkan dan mensubstitusi nilai x, kita dapat memperoleh nilai y, kita dapat memperoleh banyak poin. Titik-titik ini dapat disajikan dalam sumbu koordinat untuk mendapatkan grafik berbentuk parabola untuk persamaan kuadrat. Metode grafik untuk menentukan akar Titik di mana grafik memotong sumbu x merupakan solusi dari persamaan kuadrat. Titik-titik ini juga dapat diperoleh secara aljabar dengan mengubah nilai y menjadi 0 dalam fungsi y = ax² + bx + c dan menghasilkan nilai x. Tips dan Trik Memecahkan Persamaan Kuadrat Beberapa tips dan trik yang diberikan di bawah ini tentang persamaan kuadrat sangat membantu untuk menyelesaikan persamaan kuadrat dengan lebih mudah. Persamaan kuadrat umumnya diselesaikan melalui faktorisasi. Tetapi dalam kasus ketika tidak dapat diselesaikan dengan faktorisasi, gunakan rumus kuadrat. Akar persamaan kuadrat juga disebut nol persamaan. Untuk persamaan kuadrat yang memiliki nilai diskriminan negatif, akar-akarnya direpresentasikan dengan bantuan bilangan kompleks. Jumlah dan hasil kali akar persamaan kuadrat dapat digunakan untuk menemukan ekspresi aljabar yang lebih tinggi yang melibatkan akar-akar ini. Baca juga Latihan Soal Akar-Akar Persamaan Kuadrat dan Pembahasan Cara Cepat Menentukan Akar-Akar Persamaan Kuadrat Baru Mencari Akar-Akar Persamaan Kuadrat Demikian pembahasan mengenai persamaan kuadrat, semoga bermanfaat dan dapat menambah ilmu, wawasan, dan pengetahun untuk kalian. Sekian terima kasih.
Hi, Sobat Zenius! Ketemu lagi nih. Kali ini, gue akan mencoba membahas materi trigonometri kelas 10. Tapi sebelumnya, elo udah bisa menghitung rumus sin cos tan belum nih? Kalau belum, tenang aja karena gue juga bakal bahas itu semuanya di artikel ini. Simak terus, ya! Nggak perlu buru-buru ke materi trigonometri sin cos tan ya. Elo harus perlu paham konsep dasar segitiga dulu, apalagi segitiga siku-siku. Elo inget nggak, segitiga siku-siku punya tiga sisi yaitu depan, samping, dan miring. Oh iya, jumlah dari ketiga sudut itu hasilnya 180⁰. Elo juga perlu tahu nih, kalau konsep materi tentang trigonometri itu berkaitan banget sama ilmu populer seperti astronomi, navigasi, dan geografi. Di bidang-bidang teknis itu, elo bakal banyak banget menggunakan rumus sinus cosinus tangen atau yang biasa disebut sin cos tan. Belajar rumus sin cos tan tuh perlu banget banyak latihan, lho. Yuk temuin banyak latihan soal tentang materi ini di aplikasi Zenius. BTW, buat Sobat Zenius yang belum download aplikasi Zenius, yuk download apps-nya sekarang dengan klik banner di bawah ini. Pilih sesuai device yang elo gunakan ya! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Pengertian TrigonometriKesebangunan dan Rumus Trigonometri DasarSudut IstimewaSudut Berelasi pada KuadranSudut NegatifSudut Lebih dari 360 DerajatIdentitas TrigonometriPersamaan TrigonometriAturan Sinus & Aturan CosinusContoh Soal dan Pembahasan Pengertian Trigonometri Trigonometri berasal dari bahasa Yunani, yaitu trigonon yang memiliki arti “tiga sudut” dan metron yang memiliki arti “mengukur”. Trigonometri adalah salah satu cabang matematika tentang hubungan antar sudut dan sisi pada segitiga. Nah, rumus trigonometri dipakai untuk menghitung sudut di segitiga. Sobat Zenius, nantinya bakal kenalan sama sin, cos, tan dan lainnya. Tapi elo mending belajar kesebangunan dulu, yuk! Trigonometri termasuk dalam pembahasan ragam rumus matematika. Untuk mempelajari ragam rumus lain, kamu bisa kunjungi artikel berikut Kumpulan Rumus Matematika Lengkap dengan Keterangannya. Kesebangunan dan Rumus Trigonometri Dasar Dua segitiga meskipun sisinya berbeda panjang mungkin sebangun, lho. Coba deh elo cek dua segitiga berbeda di bawah ini, diperhatikan juga ya hasil perbandingannya. Konsep kesebangunan Arsip Zenius Kok bisa sama sih perbandingannya? Itu yang dinamakan sebangun atau bisa dibilang kedua segitiga memiliki sudut yang sama besar. Nggak heran deh makanya perbandingannya bisa sama. Catatan pada segitiga yang sebangun, perbandingan sisinya sama. Lalu, muncul istilah untuk perbandingan sudut yang bernama sin, cos, dan tan. Rumus sin, cos dan tan trigonometri, bisa elo lihat langsung di bawah ini. Rumus sin, cos dan tan trigonometri Arsip Zenius Jadi, Sin didapat dari sisi depan per sisi miring, Cos didapat dari sisi samping per sisi miring, dan Tan didapat dari sisi depan per sisi samping. Untuk Cosec, sec, dan cot kalau elo perhatikan rumus di atas, itu cuma kebalikannya dari sin cos tan. Dari mana sih, asalnya rumus trigonometri? Pelajari juga bagaimana cara membuktikan rumus trigonometri di artikel berikut Konsep Trigonometri & Pembuktiannya. Sudut Istimewa Pada segitiga-segitiga sulit diketahui angka yang pasti. Namun, terdapat segitiga-segitiga yang istimewa. Maksudnya istimewa nih apa? Segitiga istimewa ini tepat banget angka-angkanya. Bisa dibilang sebagai sudut istimewa trigonometri. Segitiga istimewa ini dibangun dari sesuatu yang kita sudah tahu pasti, contohnya segitiga sama sisi dan persegi. Mengapa kedua bangun tersebut? Karena kita sudah tahu jumlah sudut pada segitiga sama sisi adalah 180 derajat dan pada persegi masing-masing sudutnya 90 derajat. Segitiga dan Persegi Arsip Zenius Jadi, jika dihitung maka nilai-nilainya seperti pada tabel berikut. Tabel Sudut Istimewa Arsip Zenius Sudut Berelasi pada Kuadran Pertama elo harus paham kuadran dulu nih. Kuadran adalah setiap dari empat bagian suatu bidang datar yang terbagi oleh suatu sumbu silang. Sumbu silang tersebut adalah sumbu x dan sumbu y. Pada prinsipnya, nilai sin akan positif jika y-nya positif. Jika x-nya positif, nilai cos akan positif. Nilai tan akan positif jika x dan y sama-sama positif atau negatif. Terakhir, nilai k akan selalu positif. Nah, Sobat Zenius, berdasarkan yang disebutkan di atas, maka nilai pada kuadran adalah sebagai berikut. Kuadran I 0° − 90° = semua II 90° − 180° = sin III 180° − 270° = tan IV 270° − 360° = cos positif. Lebih mudahnya, perhatikan gambar di bawah. Sudut Berelasi Sudut Berelasi Elo nggak perlu kok menghafal satu per satu. Elo cukup perhatikan kalau rumus-rumus di atas memiliki pola yang sama. Terutama sudut relasi yang dipakai dan tanda untuk setiap kuadran. Untuk relasi 90° ± α° atau 270° ± α° sin → coscos → sintan → cot Untuk relasi 180° ± α° atau 360° ± α° sin = sincos = costan = tan Mungkin susah banget ya untuk ngerti cara menghitung trigonometri kalau cuma dari baca. Kalau mau lebih jelas lagi elo bisa lihat video pembahasanya yang ini ya! Sudut Negatif Sudut Negatif Elo tahu nggak nih, sudut positif adalah sudut yang arah putarannya berlawanan dengan jarum jam, sedangkan sudut negatif adalah sudut yang arah putarannya searah jarum jam. Tapi, sudut negatif bisa juga didapat dari rumus berikut. cosec -α = -cosec αsec -α = sec αcot -α = -cot α Sudut Lebih dari 360 Derajat Kalau sudutnya lebih dari 360 derajat, gimana dong? Begini nih caranya, perhatikan gambar berikut, ya! Sudut Lebih dari 360 Identitas Trigonometri Sobat Zenius sudah tahu rumus pythagoras, dong? Ya, kan? Dinget-inget lagi yuk. Soalnya untuk mengetahui identitas trigonometri perlu pengetahuan konsep tentang dasar trigonometri dan pythagoras. Nah, jelasnya cobaperhatikan gambar berikut untuk membuktikan identitas-identitas dari trigonometri. Identitas Trigonometri Arsip Zenius Bingung nggak nih? Kok bisa berubah jadi sin, cos dan tan? Coba deh elo cek rumus dasar trigonometri sin cos tan dulu. Untuk jelasnya bisa elo lihat di sini! Kamu bisa mempelajari lagi materi khusus rumus-rumus trigonometri yang meliputi identitas, jumlah/selisih sudut, sudut ganda, dan sudut paruh di artikel berikut Rumus-Rumus Trigonometri. Persamaan Trigonometri Persamaan trigonometri memiliki prinsip yang sama dengan persamaan linear atau kuadrat. Elo masih inget nggak? Bedanya kalau persamaan trigonometri hasilnya berupa besar sudut. Persamaan trigonometri adalah persamaan yang berisi fungsi trigonometri dari sudut yang belum diketahui nilainya. Elo mungkin banget lho menemukan nilai sudut yang lebih dari satu. Kok bisa? Hal ini, dapat disebabkan oleh grafik fungsi trigonometri karena terdapat nilai yang sama di beberapa sudut. Persamaan Trigonometri Pelajari juga materi Grafik Fungsi Trigonometri dan Cara Menggambarnya link berikut Cara Menggambar Grafik Fungsi Trigonometri dan Persamaannya. Aturan Sinus & Aturan Cosinus Aturan Sinus Aturan sinus memiliki peran dalam hubungan perbandingan antara setiap sisi dan sudut sinus memiliki nilai yang sama. Aturan Sinus a = panjang sisi a b = panjang sisi b c = panjang sisi c A = besar sudut di depan sisi a B = besar sudut di depan sisi b C = besar sudut di depan sisi c Nah, dari aturan sinus ini elo bisa tahu bahwa sudut terbesar tuh berhadap-hadapan dengan sisi terpanjang. Begitu juga dengan sudut terkecil dengan sisi terpendek. Ditunjukkan dengan sudut A berhadapan dengan sisi a dan seterusnya. Oh iya, kalau elo lihat gambar di atas, mulanya segitiganya nggak punya sisi t. Nah, itu ada sebagai garis pembantu agar segitiganya bisa berbentuk siku-siku. Kok harus siku-siku? Kan elo perlu cari Sin-nya tuh. Rumus Sin perlu sisi depan dan sisi miring. Sisi t itu kemudian yang jadi sisi depannya. Proses selanjutnya bisa elo amati di gambar. Aturan Cosinus Aturan cosinus adalah adalah aturan yang memberikan hubungan yang berlaku antara panjang sisi-sisi dan salah satu sudut cosinus dalam segitiga. Aturan Cosinus a = panjang sisi a b = panjang sisi b c = panjang sisi c A = besar sudut di depan sisi a B = besar sudut di depan sisi b C = besar sudut di depan sisi c Bagaimana Sobat Zenius, sampai di sini sudah paham kan tentang rumus sin cos tan? Biar makin paham, elo juga bisa lihat penjelasan lengkapnya dalam versi video lho. Klik banner di bawah ini ya! Nggak lupa untuk coba contoh soal trigonometri sin cos tan di bawah ini ya untuk ukur kemampuan elo sampai mana. Tenang, bakal ada pembahasannya juga kok. Contoh Soal dan Pembahasan Soal 1 Diketahui , tentukan nilai tan A! Jawab Elo bisa mulai dari bikin segitiga. Diinget juga Sin itu sisi depan dibagi sisi miring. Nah, tinggal dimasukin ke segitiganya. Untuk hitung Tan kan elo perlu sisi samping tuh, sedangkan elo belum tahu berapa. Bisa elo hitung pake pythagoras tuh. Nanti berbentuk segitiga gini nih Dari ilustrasi segitiga yang digambarkan karena mengetahui nilai sin A, maka nilai tan A adalah Soal 2 Diketahui sudut sin A < 0, berada di kuadran berapa sudut tersebut? Jawab Ingat-ingat kembali sudut-sudut pada kuadran. Kalau kurang dari 0 berarti masuk bilangan negatif ya. Nah, Sin akan bernilai negatif jika sudutnya berada pada kuadran III dan kuadran IV. Soal 3 Pada sudut lebih dari 360 derajat, berapakah nilai sin 960⁰? Jawab Pertama, tentukan kuadrannya. sin 960⁰ = sin 720⁰ + 240⁰ sin 960⁰ = sin 240⁰ kuadran III Selanjutnya, tentukan nilai sin. sin 960⁰ = sin 180⁰ + 60⁰ sin 960⁰ = sin 2 x 90⁰ + 60⁰ sin 960⁰ = – sin 60⁰ = . Untuk permasalahan atau persoalan lainnya dapat Sobat Zenius lihat di sini. Udah selesai deh belajar materi trigonometri sin cos tan. Lumayan susah kan? Tapi, nggak boleh gampang nyerah ya, elo pasti bisa menguasai materi trigonometri kelas 10 dari rumus trigonometri, sudut istimewa trigonometri dan nggak lupa rumus sinus cosinus tangen. Yang penting elo banyak latihan dan belajar ya! Khusus buat sobat Zenius yang ingin meningkatkan nilai rapor, sekaligus nambah pemahaman semua materi pelajaran di sekolah. Elo bisa berlangganan paket belajar Zenius. Di paket belajar ini, elo bakal diberikan akses ke ribuan video belajar premium, dibimbing langsung sampai paham sama tutor Zenius di Live Class, ikut Try Out buat mengukur kemampuan jawab soal, sampai latihan soal biar elo makin jago menghadapi segala jenis soal ujian. Yuk, cek info lengkapnya dengan klik banner di bawah ini sekarang! Jangan lupa untuk terus ikuti keseruan lainnya dari Zenius di YouTube! Sampai jumpa! Sering nemu soal matematika yang sulit elo jawab? Santai aja boy, nih kenalin ZenBot, temen 24 jam yang siap bantu kamu cari solusi dari masalah matematika! Untuk menjawab soal-soal tentang bilangan dan soal matematika lainnya, elo juga bisa manfaatkan fitur dari ZenBot, lho! Tanyain soal yang elo gak bisa jawab mulai dari download aplikasi Zenius untuk OS atau Android sekarang juga! Originally published September 18, 2021Updated by Silvia Dwi & Rizaldi Abror
sin kuadrat x sama dengan